Algebras and universal quantum computations with higher dimensional systems

نویسنده

  • Alexander Yu
چکیده

Here is discussed application of the Weyl pair to construction of universal set of quantum gates for high-dimensional quantum system. An application of Lie algebras (Hamiltonians) for construction of universal gates is revisited first. It is shown next, how for quantum computation with qubits can be used two-dimensional analog of this Cayley-Weyl matrix algebras, i.e. Clifford algebras, and discussed well known applications to product operator formalism in NMR, Jordan-Wigner construction in fermionic quantum computations. It is introduced universal set of quantum gates for higher dimensional system (“qudit”), as some generalization of these models. Finally it is briefly mentioned possible application of such algebraic methods to design of quantum processors (programmable gates arrays) and discussed generalization to quantum computation with continuous variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categories of Quantum Automata and N–lukasiewicz Algebras in Relation to Dynamic Bio-networks, (m,r)-systems and Higher Dimensional Algebra §v2

Universal decomposition, performance and categorical properties will be presented for quantum automata in the form of three new theorems for the category of quantum automata [1][1], quantum computers [2] , Qa,c, and their related quantum logics based on an extension of n-Lukasiewicz algebra [3] as well as their applications [4]. The category of quantum automata and quantum computers is first de...

متن کامل

Three dimensional quantum algebras: a Cartan-like point of view

A perturbative quantization procedure for Lie bialgebras is introduced and used to classify all three dimensional complex quantum algebras compatible with a given coproduct. The role of elements of the quantum universal enveloping algebra that, analogously to generators in Lie algebras, have a distinguished type of coproduct is discussed, and the relevance of a symmetrical basis in the universa...

متن کامل

A Non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity

A non-Abelian, Universal SpaceTime Ontology is introduced in terms of Categories, Functors, Natural Transformations, Higher Dimensional Algebra and the Theory of Levels. A Paradigm shift towards Non-Commutative Spacetime structures with remarkable asymmetries or broken symmetries, such as the CPTsymmetry violation, is proposed. This has the potential for novel applications of Higher Dimensional...

متن کامل

Universal property of skew P BW extensions

In this paper we prove the universal property of skew PBW extensions generalizing this way the well known universal property of skew polynomial rings. For this, we will show first a result about the existence of this class of non-commutative rings. Skew PBW extensions include as particular examples Weyl algebras, enveloping algebras of finite-dimensional Lie algebras (and its quantization), Art...

متن کامل

Gorensteinness of Invariant Subrings of Quantum Algebras

We prove Auslander-Gorenstein and GKdim-Macaulay properties for certain invariant subrings of some quantum algebras, the Weyl algebras, and the universal enveloping algebras of finite dimensional Lie algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008